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We express community detection as an inference problem of determining the most likely arrangement of
communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads
to fast, accurate algorithms for community detection.
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Community detection is a well-studied problem in net-
works �1�. This is the problem of dividing a network into
communities, such that nodes within the same community
tend to be connected by links, while those within different
communities tend not to be connected by links. This problem
has applications in understanding the structure of social and
biological networks �2�, while the closely related graph par-
titioning problem discussed below has applications in paral-
lel processing, to allocate assignments to different processors
while minimizing interprocessor communication.

Unfortunately, despite all this interest, there is no formal
definition of the problem. Instead, each author tends to define
communities as being whatever is found by a particular com-
munity detection algorithm �3�. In this work, we exploit a
standard method of testing communities, the four-groups test
�4�, to express community detection as an inference, or maxi-
mum likelihood problem. This leads to a derivation of a Potts
model similar to those derived previously on phenomeno-
logical grounds �5�.

To solve this inference problem, we must find the ground
state of the Potts model. To do this, we turn to the techniques
of belief propagation �7�, also known as sum-product and
mean-field theory. Belief propagation was originally devel-
oped to perform decoding in a certain class of error correct-
ing codes, called low-density parity check codes �8�. In this
problem, one has a sender and receiver communicating over
a noisy channel, and the receiver must determine which of all
the possible messages is the most likely. This problem can be
mapped onto finding the ground state of a spin system on a
particular graph �9�. The belief propagation algorithm ex-
ploits the fact that the graph has a low density of loops to
solve this problem, in a manner similar to the famous Bethe-
Peierls �10� solution for the thermodynamics of a spin sys-
tem on a Bethe lattice.

We will find that the resulting belief propagation algo-
rithm for community detection is highly accurate on the four-
groups problem, while also performing well on other test
networks. We then discuss the scaling of computational time
with system size, extensions of this algorithm, and other
problems.

To express community detection as an inference problem
we consider the following method, often used to test com-
munity detection algorithms �4�. We invent a network as fol-
lows: we consider N nodes, divided into q different commu-
nities with nk, k=1, . . . ,q, nodes in each community. The
initial assignment of nodes to communities is done randomly
in one of two ways. There are two ways used in the litera-
ture: either we assign each node independently to a random

community �leading, in the case q=2 to a binomial distribu-
tion of the number of nodes to a given community�, or we
randomly assign exactly N /q nodes to each community. We
then consider each pair of nodes in turn. We connect those
nodes with probability pin if they lie within the same com-
munity and pout if they lie within different communities. We
then run the community detection algorithm and see if it
correctly assigns nodes to communities. Let qi be the initial
assignment of a community to node i. The probability that a
given graph G arises from this procedure is equal to

p�G��qi�� = �	
k=1

q

�1 − pin�nk
2/2−nk/2
�	

k=1

q−1

	
l=k+1

q

�1 − pout�nknl

� �	

�ij�
� pin

1 − pin

�qi,qj
�	

�ij�
� pout

1 − pout

1−�qi,qj


�1�

where 	�ij� denotes a product over pairs of vertices i , j con-
nected by an edge. To verify the correctness of this formula,
first consider the case in which there are no edges at all in the
graph. Then, the probability is given correctly by the first
two products of Eq. �1�. Adding edges to the graph changes
the probability as given by the second two products in Eq.
�1�.

We now consider a given graph and formulate the prob-
lem as follows. Find the most likely community assignment.
Following Bayes’ theorem, given a graph, the probability
that any given community assignment is the “correct” as-
signment is proportional to the probability p�G � �qi�� multi-
plied by the a priori probability of having a given nk:

P��qi��G� = P�G��qi��P��qi��/P�G� . �2�

If we follow the procedure of randomly assigning each node
to a given community, then the a priori probability P��qi�� is
constant, and thus the optimal community assignment maxi-
mizes the probability in Eq. �1�; any nonconstant prior prob-
ability such as arises by constraining there to be exactly N /q
nodes in each community can be easily incorporated by add-
ing additional terms. Note that P�G� is unimportant in this
optimization procedure as it does not depend on the specific
choice of �qi� being only an overall proportionality constant
for the given graph.

We rewrite Eq. �1� as an exponential:
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p�G��qi�� = c exp�
�ij�

J�qi,qj
exp�
i�j

J��qi,qj
/2
 , �3�

where �ij� denotes a sum over pairs of i , j connected by an
edge in the graph, and c=exp�ln�1− pout�N�N−1� /2�
�exp��ij�ln�pout / �1− pout���, and with

J = ln��pin�1 − pout��/��1 − pin�pout�� ,

J� = ln��1 − pin�/�1 − pout�� . �4�

The factor of 1 /2 in Eq. �3� is to avoid double counting.
Equation �3� presents the probability as a Potts model prob-
lem with combined short- and long-range interactions, with
coupling constants J ,J�. Thus, for the case of random assign-
ment of nodes to communities, Eq. �3� gives the exact prob-
ability of any initial community assignment, reducing the
problem of community detection to finding the ground state
of this Potts model. Assuming pin� pout, the short-range in-
teractions are ferromagnetic, favoring the assignment of
neighboring nodes to the same community, while the long-
range interactions are antiferromagnetic and prevent one
from simply taking all nodes to lie within the same commu-
nity. The problem of finding the ground state is very closely
related to the NP-complete problem of graph partitioning, to
break a graph up into partitions, minimizing the number of
edges connecting partitions and minimizing the difference in
number of nodes between partitions. Having arrived at Eq.
�3� we have a very similar problem to that studied in �5�.
Other problems in combining Potts models with clustering
appear in �6�.

Instead of using Monte Carlo methods to find the ground
state as in �5�, we adopt the method of belief propagation,
which we believe to be more efficient for many of the com-
munity detection problems that arise. Indeed, for the infer-
ence problems which arise in many error correcting codes,
belief propagation is the most efficient method.

We begin by taking a mean-field approximation for the
long-range interactions, justified for large N. The reason for
this will be discussed more below. We approximate
p�G � �qi��� pmft��qi��, where

pmft��qi�� � Z−1 exp�
�ij�

J�qi,qj
exp�
i

hi�qi�
 . �5�

Here Z is a normalization, and for r=1, . . . ,q we define
hi�r�=J�N��r�−J�pi�r� and ��r�=ipi�r� /N, with

pi�r� =


�qj�,qi=r

pmft��qj��


�qj�

pmft��qj��
, �6�

so that pi�r� is the probability in the mean-field approxima-
tion that node i belongs to community r. These are a set of
self-consistent equations for pi�q�.

We will find that solving these equations, at least in the
belief propagation approximation below, leads to a spontane-
ous symmetry breaking: for sufficiently large J ,J�, the prob-
ability pi�q� depends on q. Of course, given any solution that
breaks symmetry, one can arrive at other valid solutions by

relabeling the communities. We then make a “nodewise”
maximum a posteriori probability approximation: for each
node i, we compute pi�q� and then assign the node i to the
community q that maximizes pi�q�. This is an approxima-
tion: the set of community assignments that maximizes
p�G � �qi�� may not be given by maximizing the probability
for each node separately. However, similar approximations
work very well for error correcting codes �8�, and these ap-
proximations are justified for large J ,J�.

To compute the pi�q�, we apply belief propagation. Sup-
pose the graph forms a tree, with no loops. Then, the prob-
lem of solving for pi�q� given hi�q� can be solved: for each
pair of nodes i , j connected by an edge, we define pij�r� to be
the probability pi for the network modified by removing the
edge connecting i to j. That is,

pij�r� =


�qk�,qi=r

exp�− J�qi,qj
�pmft��qk��


�qk�

exp�− J�qi,qj
�pmft��qk��

, �7�

as exp�−J�qi,qj
�pmft��qk�� is the probability distribution on the

network with the edge removed. Then, for a treelike struc-
ture, the Bethe-Peierls solution gives

pi�r� = Zi
−1 exp�hi�r�� 	

j

i,j n.n.

�exp�J�pji�r� + �1 − pji�r��� ,

�8�

where Zi is chosen so that r=1
q pi�r�=1, and where the

product 	 j
i,j n.n. is taken over all nodes j which are

connected to node i. Note that exp�J�pji�r�+ �1− pji�r��
=spji�s���r,s exp�J�+ �1−�r,s��. Similarly,

pij�r� = Zij
−1 exp�hi�r�� 	

k�j

i,k n.n.

�exp�J�pki�r� + �1 − pki�r��� ,

�9�

where again we choose Zij such that r=1
q pij�r�=1.

These so-called “belief propagation” equations �8� and �9�
are exact for a tree. To see this for Eq. �8�, note that the graph
with all the edges from i to its neighbors removed breaks into
several disconnected pieces, one piece Gj for each neighbor j
of i plus one piece containing only i. Define pmft,j��qk,k�Gj

��
to be the Boltzmann weight for the Potts model on Gj. Then,


�qk�,qi=r

pmft��qj�� � 	
j

i,j n.n.

� 
�qk,k�Gj

�
pmft,j��qk,k�Gj

��exp�J�r,qj
��

� 	
j

i,j n.n.

� 
qj=1

q

exp�J�r,qj
�pji�qj�� ,

and similarly for Eq. �9�. A more detailed exposition is in �8�.
The belief propagation algorithm makes the very effective

approximation of using these same equations for an arbitrary
graph, even if it has loops. This is most effective if the den-
sity of loops is small and has been proven in many applica-
tions. One source of error in our approach is the appearance
of loops in the network. For the randomly generated test
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networks below, however, loops become sparse in the limit
of large N. Further, in our tests on networks with finite N and
on real-world networks the method appears to work very
well in practice. A second source of error is our use of the
mean field instead of belief propagation for the long-range
links. This is done partly by necessity: if instead we wished
to apply belief propagation to Eq. �3� without using the
mean-field approximation, we would find that we needed
N2−N different variables pij�r� since all nodes are connected,
greatly slowing the algorithm. However, we believe that for
N large, the mean-field approximation is justified since, for
large N, the fluctuations in ��r� are small compared to the
average.

There are many ways to solve the belief propagation
equations. We choose to initialize each of the pi�r�
=1/q+�i�r�, where �i�r� is chosen randomly and is small,
and similarly for each of the pij�r�. We then perform a fixed
number of iterations: on each iteration we first randomly
select one directed edge i , j and then update the correspond-
ing function pij�r� by replacing its current value with 0.75
times its current value plus 0.25 times the value given by
solving Eq. �9�. We then randomly select one node i and
replace the function pi�r� by 0.75 times its current value plus
0.25 times the value given by solving Eq. �8�. After updating
pi�r� we update ��r� and mi�r�, thus solving the belief propa-
gation and mean-field equations simultaneously.

We have tested this algorithm on several problems. We
first consider the four-groups problem. In this case, we take a
randomly generated network of N=128 nodes, divided into
four communities of 32 nodes each. After generating the net-
work, we run the community detection algorithm, to find the
most likely assignment of communities. We measure the al-
gorithm’s performance by determining the fraction of nodes
whose community it identifies correctly. There is some arbi-
trariness in how this fraction of correctly identified nodes is
defined, which is connected with the arbitrariness in the la-
beling of communities: one can permute the community la-
bels as desired, given the Potts symmetry of Eq. �3�. To
resolve this arbitrariness, we follow the stringent definition
adopted in �11� for the accuracy.

We choose pin and pout so that each node has on average
zin connections to other nodes in the same community and
zout connections to nodes in different communities. We pick
zin+zout=16, and consider a range of values of zin, the aver-
age number of intracommunity links. For large zin, the com-
munity detection problem is easier, as the effect of the com-
munity structure is much more clear.

The results of this procedure are shown in Fig. 1. As seen,
with 100 000 iterations, the algorithm is highly accurate.
With 50 000 iterations, a slight decrease in accuracy is no-
ticed for small zin, and the accuracy goes down significantly
at 10 000 iterations �by increasing to 200 000 iterations, a
slight improvement is noted for zin	8�. For the first three
curves, we used the choice of constants in Eq. �4�. Since
these constants depend on the given zin, zout, something
which may not be known for an arbitrary network, we re-
peated the algorithm with a particular fixed choice of con-
stants, exp�J�=6, exp�NJ��=10−10. This choice of constants
was chosen completely arbitrarily, but as seen the algorithm

still works well, with a much higher accuracy than the
Newman-Girvan algorithm. However, the Newman-Girvan
algorithm has some advantages in terms of picking the most
optimal number of different communities into which to di-
vide the network, while the present algorithm takes the num-
ber of communities as an input. Indeed, the present method
outperforms all others listed in �3�, with the exception of a
simulated annealing method �12� which offers comparable
accuracy but may not be as fast.

We can accelerate the algorithm by simplifying the belief
propagation equations: for each site we track only the beliefs
pi�qi� and iterate the equations

pi�r� = Zi
−1 	

j,�ij�
exp�hi�r���exp�J�pj�r� + �1 − pj�r��� .

�10�

This simplified method is most appropriate for networks with
large z where it becomes faster than the belief propagation
method by roughly a factor z as there are fewer equations to
solve. As seen in Fig. 1, this method is almost as accurate as
the belief propagation algorithm for zin
8, and actually per-
forms better for zin�7.5. We believe that the improved per-
formance is a result of the fact that the simplified equations
more easily break symmetry. Tests on networks with a lower
coordination number showed the difference more clearly, as
given in Fig. 2 for a network with four groups and zin+zout

FIG. 1. Accuracy of belief propagation. Circles, squares, and
triangles represent different numbers of iterations, using constants
from Eq. �4�. Pluses represent a different, fixed choice of constants
described in text.

FIG. 2. Accuracy of belief propagation algorithms for
zin+zout=4.
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=4. Another interesting approach to speed the algorithm
might be to reduce the equations to linear programming �13�.

We have also tested the belief propagation algorithm on
simple networks, such as dividing N nodes arranged on a
straight line with connections between nearest neighbors on
the line into two different communities, as well as the Za-
chary karate club network �14�. The relaxation of the algo-
rithm needed to be done slightly more slowly than described
above �ten randomly chosen nodes were relaxed before each
edge was relaxed�, and some care was taken about the con-
stants due to the lower coordination number in order to ob-
tain convergence: with poor choices the beliefs pi�r� oscil-
lated randomly. After finding these constants on the straight
line network, the algorithm was tested on the Zachary net-
work, and identified the communities accurately, with one
error of placing node 10 in the wrong community, as labeled
in the figure in �4�. Interestingly, after convergence of the
equations, for almost all nodes i, the maximum over r of
pi�r� was greater than 0.99, except for node 9 where it was
only 0.98 and node 10 where it was only 0.87; these two
nodes have roughly equal connections to both communities.

We have expressed community detection as an inference
problem, providing a formulation of the problem in statistical
mechanical terms. We then applied the belief propagation
method to solve the resulting statistical problem. The results
are accurate; however there are a number of questions that
should be addressed as well as possible extensions. First,
there is some questions about picking the constants J ,J�. In
some cases, especially on test networks with a low coordi-
nation number, a poor choice of constants leads to either a
lack of convergence of the belief propagation equations, or
else convergence to a solution in which pi�r�→1/q so that
the spontaneous symmetry breaking is absent. In both cases

the algorithm performs poorly at finding the communities.
The former case requires a slower relaxation of the equa-
tions, while the latter case requires an increase in the con-
stants J ,J�. Fortunately, both of these cases can be detected
by looking at the pi�r� as the algorithm runs, and then cor-
rected, so that the algorithm warns of its possible failure in
these cases. Even on the simple case of N nodes on a straight
line above, a poor choice of constants can lead to failure to
converge. However, we emphasize that for every network we
tried, it was possible to find a choice of J ,J� for which the
algorithms converged to a symmetry breaking solution, and
for every such case this appeared to be a good solution. For
randomly generated networks as above, one can obtain the
correct values of J ,J� from Eq. �4� and these appear to al-
ways work. It would be interesting, however, to test this
algorithm on very heterogeneous networks.

The next question is the scaling of the algorithm with
system size. Accurate results were found with 50 000 itera-
tions, or 50 000/ �128�16��24 iterations per edge. For a
general network, we expect that if there are few links be-
tween communities, then the number of iterations required
per edge will be proportional to the phase-ordering time for a
given community under the appropriate dynamics. This
phase-ordering time typically scales �15� as some power of
the relevant length scale for a community, and for many
networks this length scale is of order ln�N�. We thus expect
for a network with average coordination number z that the
time will typically be of order zN ln�N�� for some �.
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